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4 . -  

1. SUMMARY 

In the study described in this report we a r e  concerned with the problem 

of reproducing a two-dimensional image at a remote location by using a 

novel method which we shall r e f e r  to as "area-scan television". 

method is described in Section 2. 

pattern - at both the t ransmit ter  and the receiver  - which consists of many 

This 

Very briefly, it uses  a scanning aperture 

, 

individual randomly - placed apertures which a r e  illuminated simultaneously. 

These aperture patterns a r e  referred to  in  Sections 2 through 6 a s  t rans-  

missivity patterns. 

i 

The scope of the study is delineated in Section 3.  In particular,  the 

study is restr ic ted to  black-and-white television. 

made to  enable us to  keep the costs of the study within the l imits imposed 

by the available funds; and not because area-scan techniques cannot be used 

to provide multi-colored replicas.  

as mentioned in Sections 8 and 9, particularly well-suited for providing such 

replicas.  

This restriction was 

In fact, we believe this method to  be, 

The c r i t e r i a  for judging (a) the quality of a replica, (b) the practical  

realizability of the mechanically scanning aperture patterns employed in 

area-scan television, and (c)  the system performance of this type of 

television, a r e  described in Section 4. 

We derive in Section 5 sufficient conditions for  obtaining, in  principle, 

a "perfect"' replica. We show that these conditions cannot be satisfied by 

phy s ic  ally r e  aliz able s canning - aperture patterns.  We subs e quently de rive 

four general forms of aperture patterns that provide, i n  principle, perfect 

replicas by satisfying l e s s  restrictive sufficient conditions for perfect 

replication. Single-spot line-scan television i s  shown t o  be a special case 

of two of these general forms.  

possible mathematical models of aperture patterns for area-scan television. 

The other two general forms  provide two 

The relative system performance of a r ea -  scan and single-spot line- 

scan television - which we shall henceforth refer  to simply as  spot-scan 

'This t e rm i s  defined in Subsection 4. 1 
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television - is discussed in Section 7. 

performance is the replica signal-to-noise ra t io  as a function of the system 

parameters  listed in Subsection 4. 3. 

The criterion chosen for judging this 

The mer i t s  of spot-scan television using mechanically scanning apertures  

a r e  discussed in Section 8; and the relative mer i t s  of area-scan television 

and spot-scan television a r e  discussed in Section 9. 
conclusions of these discussions are: 

Very briefly the principal 

( 1 )  The instrumentation of a spot-scan system using a pa i r  of 

mechanically scanning apertures i s  simple and reliable. 

particular it requires  no high-voltage supply and no sweep 

circuits.  

In 

(2) The signals emitted by an area-scan television t ransmit ter  

a r e  secure; that is, a replica of the transmitted picture cannot 

be reproduced by intercepting these signals i f  one does not 

know exactly the form of the scanning aperture pattern used. 

(3 )  Area-scan television can be used, when the intensity of the 

image to  be transmitted i s  low, to  improve the quality of the 

received image by reducing the effect of the noise generated 

in the low-level circuits of the t ransmit ter .  

can be achieved at the expense of an increase in video bandwidth. 

This improvement 

Sections 2 through 4, and 8 through 9 a r e  essentially self-contained and can 

be read without referr ing to  Sections 5 through 7. 

1-2 



2. DESCRIPTION OF AREA-SCAN TELEVISION 

In the study described in this report ,  we a r e  concerned - as 

already mentioned - with the problem of reproducing a two-dimensional 

image a t  a remote location by using a novel method which we shall refer  

to a s  "area-scan television". This method is described below. 
8 

The two-dimensional intensity I(qy,t) of the image (see Figure 1) 

is converted, effectively, to a point intensity ut) by performing, for  

where Wy(d,y',f) is a rea l  dimensionless transmissivity function used to 

ass ign the ''weight" W{x',y',t!) to the point (x',y') of the image at the instant 

t l ,  and where the l imits  of integration determine the spatial boundaries 

of the image to be reproduced. 

The intensity Qt') is in turn converted to an  electrical  signal qt') by a 

t ransducer  performing the operation 

(Th i s  is  assumed to be rectangular. ) I 
I 

Sp) = cIJp(t',, (2  -2) 

2 where 5 is  a dimensional constant. If we express  I(x',y',tI) in wat ts /cm 

and a',b' in centimeters,  5 must  be expressed (because of equation (2-1) 

in watts; and hence, i f  we express  S(f) in volts, 5 has the dimensions 

of volts/watt, The signal Vf) is  transmitted to a remote location where 

the received signal, s(t) is converted f i r s t ,  by a t ransducer ,  into a point 

intensity and then optically into a uniform two-dimensional intensity dis- 

tribution R&t) by performing the operation 

8 
t 
t 

Ruw = (y@(t), (2-3) 

2 where the constant %must have the dimensions (wat ts /cm )/volt  i f  we 
1 

express  %(t) in  volts and RU(t) in watts/cmL. 

distribution is converted to a succession of, in general, non-uniform in- 

tensity distributions R(x,y,k) at instants k by performing the transformation 

The uniform intensity 

2 -1 7 
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The lens  L 1 f o r m s  the "original image" intensity 

The weighting function W I (d,y',tl) l i e s  in the same p 

The lens  $ converts the two-dimensional intensit 
to a point intensity $(tl). 

The transducer -probably a photosensor P - co 
is  amplified and radiated by the transmitting ante 
amplification - to  modulate the light source S. 

The condenser lens  % produces the uniform illu 

The lens L is used to image the uniform illuminat 
W R (x,y,t),o&o an integrating screen  used to displa 

Note: Scaling factors  ar is ing f rom the varioi 
the intermediate images,  and the repli  
analysis. 



i Y s  

stribution I(x!,y',t'). 

as the original image. 

I(x',y',l!), a s  seen through W (d,y',t'), I 

iverts this intensity to an electrical  signal which 
ma. The received signal i s  used -after 

'ination %( t ) .  

, as seen through the weighting function 
r the es i red  replica R(qy,t) of I(x!,y',t'). 

s different dimensions of the original image, 
ba, are omitted in Section 2 and in the subsequent 

Figure 1. Area - Scan Television Principle 
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k-1  

where W (x,y,t) i s  a rea l  dimensionless transmissivity function used to 

ass ign the "weight" WR(KY,t) to the uniform intensity distribution v t )  at 

the point ( s y )  at the instant t .  

be ca r r i ed  out optically in  which case the integration may be performed by 

a photo -luminescent (phosphor) screen. 

int e g r a t  ion 

R 

In (2-4) the multiplication may, for example, 

We choose the interval of 

i - h - 1  ( 2  -5) 

small enough for  the intensity I(x,y,t) to change only insignificantly during 

the corresponding t ime interval,  (L -T ) - (&  -7) where -1 

7 f t-t' (2-6) 
1 i s  the propagation t ime between the t ransmit ter  and the receiver . 

may therefore write, to a high degree of approximation, 

We 

for ( 2  -7) 

We assume that the successive intensity distributions R(x,y,L) obtained for 

successive values of k a r e  replicas of the corresponding intensity dis t r i -  

butions I(~',y',\-~-7), which a r e  time -samples of the time -varying intensity 

distribution 1(2,y',t-T) of the original image. 

provide a display of the original image a t  a remote location f rom this 

image i f  the above assumption is  correct.  One of our major objectives in  

this study is to discover whether area-scan television can be used to pro-  

vide such replicas. 

The distributions R(x,y,k) 

The identify sign is used in the report  to denote that an equation is  t rue  
by definition. 

2 -2 
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3 SCOPE OF THE STUDY 

Very briefly, the general questions which we answer in the 

present study are: 

(a) Do there  exist  physically realizable weighting functions 

WI(xl,y',t!) and W (x,y,t) for which the reproduction of the 

original image can be made t o  be, in principle, a perfect 

replica of this image. 

R 

(b) If such weighting functions exist, how fine a resolution 

can one achieve with a repl ica  obtained by using specific 

f o r m s  of weighting functions. 

(c) Wha t  a r e  the meri ts  of spot-scan television using mechani- 

cally scanning apertures.  

(d) What are the relative mer i t s  of area-scan television and 

spot- scan televis ion.  

In the study, a number of res t r ic t ive assumptions a r e  made and 

the questions above a r e  answered only for systems satisfying them. 

(A) Only a "monochromatic"1 replica of the original image 
is required. 

(B) The replica and the uniform intensity distribution 

have the same dimensions as the original image. 

(C) The weighting functions W (d, y', t!) and W ( s y , t )  are instru- 
mented by trans1atin.g synchronized t ime -variant t rans  - 

missivity patterns (aperture patterns) at a uniform velocity. 

I R 

(D) These patterns a re  assumed to  be periodic in one direction 

and t o  have a common period. 

(E) The transmissivity patterns of the two weighting functions 
a re  identical. 

Monochromatic in the sense of black and white conventional television; 
and not in the sense of using light of only a single wavelength. 

3 -1 



The f i r s t  assumption i s  made to enable us to  keep the costs of 

the study within the l imits imposed by the available funds; and not because 

the area-scan method cannot be used to provide multi-colored replicas.  

In fact we believe that this method is particularly well- suited for providing 

such replicas.  

cription of a rea-  scan television given ear l ie r  since no wavelength dependence 

is shown in the operations used to form the replica. It is also implied in 

the definition of a perfect replica given at the beginning of Subsection 4. 1 

below, because this definition does not require color matching. 

The first assumption has already been implied in the des-  

The second assumption is a tr ivial  one and i s  only made to  

simplify the exposition. 

The third and fourth assumptions a r e  made in order  to  r e s t r i c t  

the analysis to  the type of instrumentation which we believe to  be the 

simplest .  

The fifth assumption i s  made because we believe that no ad- 

vantages can be obtained by using two different types of weighting functions. 

W e  do not, however, possess  a rigorous proof of this statement. 

3 -2 



4. CRITERIA 

4. 1 Cri te r ia  for Judging the Quality of a Replica 

We say that a replica of the original image is perfect i f  i t s  

intensity distribution at t ime \ i s  identical to that of the original image 

during the time interval 

L-1-7 st < tk -7 .  (4- 1 )  

This condition is satisfied if  the "corresponding" two-dimensional spatial 

line spectra  of these distributions a re  identical. 

is  used here  to  indicate that these line spectra  are the coefficients of two- 

dimensional Fourier  se r ies  that have the same p a i r  of fundamental periods. 

The t e r m  "corresponding" 

We consider in  the present report  only physically realizable - 
and hence bandlimited - images Hence the spatial line spectra  of the 

images considered, and their  replicas, contain only a finite number of 

non-zero spectral  lines. Nevertheless, we shall express  the various 

functions with which we shall be concerned by Fourier  s e r i e s  containing 

an infinite number of t e r m s ;  it should be understood, however, that only 

terms corresponding to non-zero spectral l ines are significant. 

In practice replicas a r e  never perfect, and we therefore need 

c r i t e r i a  for  judging their  quality; that i s ,  the fidelity with which they 

represent  the original image. 

These criteria are:  

t 1) Re solution 

(11) Contrast  

(111) Relative total intensity range 

(IV) 
(V)  Spatial distortion. 

Linearity with respect to intensity 

Resolution will be defined later in t e rms  of the "quality function'' discussed 

in Subsection 6. 1. 

in a s ses  sing the performance of conventional optical image-reproducing 

systems.  

This function i s  equivalent to the spread function used 

4-1 



4.2 Cr i t e r i a  for  Judging Whether Weighting Functions a re  
Practically Re aliz able 

The cr i te r ia  used to  determine whether weighting functions are 

practically realizable are : 

( 1 )  The complexity and, in particular, the "fineness" of the 

transmissivity patterns used for the weighting functions. 

The overall length of these patterns. 

The speed with which these patterns must  be moved. 
(2) 

(3)  

4. 3 Cri te r ia  for  Judging the Relative System Performance of Area- 
s c a n  Television and Spot-Scan Television 

The criterion chosen for judging the system performance of spot- 

scan television is the repl ica  signal-to-noise ratio as a function of: 

( 1 )  video bandwidth 

(2) integration interval 

(3) 

(4) 

1 noise originating i n  the low-level circuits of the t ransmit ter  

noise originating in  the communication link and in the low- 

level circuits of the receiver  

(5) t ransmit ter  power 

(6) the losses  in the communication link ar is ing from the inverse 

square law, attenuation, and reflections. 

1 The noise originating in the low-level c i rcui ts  of the t ransmit ter  consists - 
assuming a photosensor is used to detect the radiation from the image - of 
photosensor noise and of noise in the subsequent preamplifier. 

4 - 2  



5. GENERAL FORMS OF WEIGHTING FUNCTIONS PROVIDING PERFECT 
R E P  LI C-4s 

5. 1 Sufficient Conditions on the Two-Dimensional Spatial Line Spectra of 
the Weighting Functions for Perfect  Replication 

We shall derive these conditions by requiring that the "corresponding" 

spatial two-dimensional line spectrum of the replica be identical with that of 

the original image. The conditions can be derived by representing the func- 

t ions I(2,y',tf), R(yy,t), WI(d,y',t'), and W R (x,y,t), by four two-dimensional 

Four ie r  s e r i e s  having the same pair  of fundamental periods 2a and 2b along 

the x and y-axes, respectively. We have 
1 

where 

&I) (t') mn 

-a -b 

a 

4ab 
-a 

a 

4ab 
-a -b 

~~ 

See, for example, P i e r r e  Mertz and Frank  Gray 
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a b  . -  . rx  . sv. 

-a -b 

Actually the Fourier  s e r i e s  (5-1) does not represent just  the function I(x!,y',t'); 

it also represents  the doubly-infinite set of identical functions obtained by 

displacing the original function (I(d,y',tI) through all integral multiples of 2a in 

the x-direction and of 2b in the y-direction. 

a lso represents  both I(d,y',tI) and the doubly-infinite set  of functions specified 

above. 

through (5-8). 

chosen to  satisfy the conditions 

Hence the line spectrum (5-5) 

Similar statements apply to equations (5-2) through (5-4) and (5-6) 

In equations (5-5) through (5-8) the lengths a and b must be 

a 2 a', b 2 b', ( 5 - 9 4 ,  (5-9b) 

where we have assumed, in  accordance with assumption (B) ,  page 3-  1 that 

the dimensions of the replica and the uniform intensity distribution R (t) have 

the same dimensions (2a', 2b') as the original image. 

sure  that only one member of the four doubly-infinite se t s  of functions r ep re -  

sented by equations (5-5) through (5-8) is used by restricting the illumination 

to at most  only one member of each of these four sets. 

U 
These conditions en- 

We are not concerned here  with e r r o r s  in reproduction ar is ing f rom 

imperfections in  the t ransmission channel, and shall therefore assume that 

(5-10) 

where the constant crR is a dimensionless scale factor smaller  than unity 

which represents  the fraction of the transmitted power intercepted a t  the 

receiver ,  and where T i s  the propagation time. 

I f  we substitute in (5-6) the expression for R(x,y,tk) given by (2-4), 

we obtain 

IC-1 -a -b 

o r ,  interchanging the order  of integration, 

5 -2 
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-a -b L-1 
which we may in  turn,  using (5-8), write a s  

tk 

L-1 
RrJ tk )  = RU(t)dR)(t)dt. rs 

Now, f rom (2-1)  and (2-2), we obtain 

and, f rom (5-10) and (2-3) 

(5-13) 

(5-14) 

(5-1 5) 

Hence, since (t-7) is equal to t‘, ( see  2-6), it follows f rom (5-14) and (5-15) 

that 

(5-16) 

Substituting this expression for  q t )  in (5-1 3 )  , we obtain 

tk a b  

Rr = cs { J I ( ~ , y l J t - 7 ) W ~ i , y ’ , t - T ) ~  dyl} dR)(t)dt r s  (5-1 7) 

L-1 -a -b 

if we remember  ( 5 - 9 ) ,  and that 

and i f  we write ‘ %%T% 

(5-1 8) 

(5-20) 

5-3 
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We now express  I(d,y’,t-T) in  (5-17) in 

line spectrum by using (5-1) and get 

k-1 

t e r m s  of its two-dimensional 

(5-21) 

which, may be written, in the form 

by interchanging the order  of the summations and integrations. 

because of Assumption (2-7), we also have 

Fur thermore ,  

Hence (5-22)  may be written in  the f o r m  

o r ,  because of (5-7), in the form 

k-1 
.b 

where wLr(t-7) denotes the complex conjugate of dl) (t-7). mn  

(5-25) 

By examining this expression - which relates  the space spectrum 

of the replica R(x,y,i$ (at  t ime t$ to that of the original image I(x,y,& 1-7) 

(a t  the corresponding time (L-l-7) - we can derive sufficient conditions 

which the weighting functions must  satisfy, f o r  this replica to be perfect. 

These conditions a r e  

5 -4 



F 
id1)*( t - 7) dR)( t) dt = 0 mn rs  

L -1 

for all 5 and for 

m # r and/or  n # s; 

and 

f W(’)*(t-T)W (R) (t)dt = 4abC 1 
mn r s  

(5  -26a) 

(5  -26b) 

(5  -27a)  

F-1 
for all \ and fo r  

m = r ,  n = s. (5  -27b) 

The f i r s t  condition ensures  that only one spectral  line of the original image 

I(x!,y’,t?) contributes to any one spectral line of the replica. 

dition ensures  that corresponding spectral l ines of the original image and the 

replica a r e  of equal intensity. 

all cases  considered in this report  - a s  Conditions I and I1 respectively. 

They can be expressed in more  compact form by using Kronecker deltas. 

We have 

The second con- 

We shall re fe r  to these two conditions - in 

L-1 
which contains both the above conditions in  a single equation. 

When Conditions I and-I1 a re  satisfied, we obtain f rom (5-25) 

( 5 - 2 8 )  

(5-29) 

for  all \; that i s ,  the space spectra of the successive replicas a r e  identical to 

those of the corresponding original images. Hence we see that these replicas 

a r e ,  in effect, perfect reproductions of these images when Conditions I and 11 

a r e  satisfied. 

5-5 
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Conditions (5-26) and (5-27) have been derived by using 

restr ic t ive Assumptions (A) and (B) on page 3- 1 .  They therefore 

only the 

apply to the 

most  general  fo rm of weighting functions for which the Fourier  s e r i e s  provide 

a valid representation of these functions and of the original image and i t s  

replica in the intervals 2a and 2b. 

menting such functions. 

We can distinguish two methods of instru-  

(1) The transmissivity patterns a r e  fixed with respect to the origi-  

nal  image I(d,y’,t!) and the uniform intensity Vt), but vary  with 

time . 1 

(2) The transmissivity patterns are moved a c r o s s  (scan) 

I(d,y’,i!) and wt), but are  time-invariant. 

We shall, in accordance with Assumption C, res t r ic t  ourselves to 

the second method. 

pat terns  during the integration interval T must not be l e s s  than 2a1, that i s ,  

In this case the distance t raversed  by the transmissivity 

VT 2 2a1, ( 5 - 3 0 )  

where v is the speed of translation of the two transmissivity pat terns  co r -  

responding to the weighting functions Wid,y’,t‘) and WR(qy,t). 

now take the form W x‘--vt‘,y’) and W,(x-vt,y), respectively. 

for  dR)(t)  now becomes 

These functions 

Expression (5-8) i 
r s  

rx sy 
Ff (R) ( t )  - - - 1 JwR(X-Vfy)e 2a 2b -i2n(- t -) a b  

dx dy, r s  4ab 
-a -b 

which, i f  we make the change of variable 

x = x-vt 

and introduce Assumption (D),  can in turn be written as 

a-vt b 
(R) - 1 w (t) - - r s  4ab 

-a-vt -b 

o r  

( 5 - 3 1 )  

(5-32) 

(5-33) 

( 5 - 3 4 )  

-a -b 
’That is, either the shape o r  degree of transparency of these patterns var ies  

with t ime. 

5 -6 



We have changed in (5-34) the l imits  of integration of the dummy variable X 

without changing the value of the integral because W (X,y) is by Assumption D ,  

periodic in X ,  and because the exponential with imaginary exponent is, by 

definition, periodic in X. 

R 

We now write (5-34) in the f o r m  

where 

-a -b 

o r ,  since X is only a dummy variable, 

-a -b 

Similarly,  

or 

Thus Conditions I and II above now take the form 

h-1 
for 

and 

5-7 

(5-35) 

( 5 -3 6a) 

( 5 - 3 6b) 

(5-37) 

(5-38) 

(5  -3 9a) 

rn # r and/or  n # s, (5  -3 9b) 



( 5  -40a) 

L-1 

for 

(5  -40b) m = r and n = s 

Now the equation 

- k  i21~qt 
(5  -41 a) dt = 0 J e  

L-1 

i s  t rue  whenever 

(5-41b) K 
L-k-1 ’ 

q =  

where K is a real non-zero integer; that i s ,  whenever the integration interval 

is  equal to a n  integral number of periods of the integrand. Also 

i21~qt  
e dt=&-L-l = T 

L-1 
(5  -42a) 

whenever 

q = 0. ( 5  -42b) 

The integrals in  (5-39a) and (5-40a) have the form of the integral in (5-41a) 

and (5-42a) if 

- v  q -(m-r). 2a  ( 5  -43) 

If  we choose 

(5  -44) 2 a  = V(L-L-~) = vT,  

we have 

- v  (m-r) q -(m-r) = -. 
L-L-1 2a ( 5 -45) 
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Relations (5-39) and (5-40) now become 

for 

n # s ,  

and 

r v  
2 a  i2n-T 

e 
4abCT 

( 5  -46a) 

( 5  -46b) 

( 5  -47a) 

for 

n = s. (5-47b) 

Equations (5-46) and (5-47) a r e  the f o r m s  taken by Conditions I and 11 in  the 

case of moving invariant transmissivity patterns.  

p ressed  by the single equation 

They can also be ex- 

r v  
2a i2n-T 

e 
4abCT (5 -48) 

We now consider the case where (a) the transmissivity pattern of 

the two weighting functions a r e  identical and (b) the motions of these two 

pat terns  a r e  synchronized so  that 

W,(x-vt,y) = wiX’-v(t‘tT\, 9 ) .  (5  -49) 

It follows, since from (2-6) 

t’ = t -7 ,  

that 

W,(X-VfY) = w p  -vcyJ). 

Hence we have, instead of equations (5-37) and (5-38), 

mn 

(5-50) 

(5-51) 

(5-52) 
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Therefore the conditions, corresponding to conditions (5-46) and (5-47)  - when 

the weighting functions a r e  synchronized according to (5-49) - are 

for 

n f s  

and 

for 

n = s, 

where 

(5-53a) 

(5-53b) 

(5  -54a) 

(5-54b) 

(5-55) 

Conditions I and I1 can also in this case be represented by the single equation 

(5-56) 

Note that these conditions also apply to the particular case when 2b is equal 

to 2b'. 

Conditions (5-53) and (5-54) a r e  sufficient to ensure that the weighting 

functions provide perfect replication under the restrictions imposed by Assump- 

tions (A) through (E). 

necessary conditions. 

However - as we shall see la ter  - they a r e  not 

5-1 0 



5 . 2  Proof That No Weightine Function Can Satisfy the Sufficient Conditions 

We now seek to discover whether there  exist spatial line spectra that 

sat isfy conditions (5-53) and (5-54). 

The quantities W(I) and h':) a r e  the (time-invariant) line spectra  of mn 
the transmissivity patterns of the weighting functions W d-vt,y') and W (x-vt,y). 

We note that the f i r s t  subscripts of these two line spectra are the same in 

equations (5-53) and (5-54). 

the relation between transmissivity-pattern line spectra whose first sub- 

scr ip ts  differ. 

i R 

Thus these conditions impose no constraints on 

To discover the implications of the constraints imposed by condition 

(5-53) on W(') and h$:) when their f i r s t  subscripts a r e  the same (i.e. when 

m=r) ,  le t ,  fo r  example, the second transmissivity pattern have a non-zero 

spectral  line dR) for the specific values 

mn 

'1 ?I 

r = r1 s =  7 .  (5-57) 

Then, we note f rom condition (5-53) that all the spectral  l ines dl)* - and 
r, s 

hence also all dl) -, must be z e r o  i f  they have the same f i r s t  s ibscr ip t  r 1 '1 
and a different second subscript s .  

( see  5-55), it follows that a t  most one spectral  line with any given f i r s t  sub- 

script  ( say  r = r ) can be non-zero. 

Since the two line spectra are equal 

1 

We next note that condition (5-54) requires  the square of the absolute 

value of two spectral l ines  with the same subscripts,  say 

(5-58) 5 ,  r = r1 and s = 

to be non-zero and equal to a ( rea l )  number which is independent of the sub- 

scr ip ts  r and s .  

in Figure 2a. 

Typical line spectra satisfying condition (5-53) are shown 

Clearly conditions (5-53) and (5-54) cannot both be fulfilled, except 

for  the tr ivial  case when all spectral l ines  a r e  zero. 

condition requires  some spectral  lines to be zero; and this violates the 

second condition. We shall sometimes re fer  to  the first condition as the 

' o r  tho gonality' condition. 

In effect, the f i r s t  

5-11 
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We note, parenthetically, that the conditions for perfect replication 

formulated in Subsection 2. 1 cannot be satisfied even when the two t r ans -  

missivity patterns a r e  different. In effect, a similar argument to that given 

for condition (5-53) shows that condition (5-46) requires  some spectral  l ines  

of at leas t  one of the two transmissivity patterns to be zero.  

some of the products W ~ ~ " . ~ ~ '  must also be zero; and this violates condition 

(5-47). Typical line spectra  satisfying condition (5-46) a r e  shown in 

Figure 2b. 

Consequently, 

5.3 Derivation of Less  Restrictive Sufficient Conditions 

As mentioned in Subsection 5.1, conditions (5-53) and (5-54) a r e  

sufficient but not necessary conditions for perfect replication under Assump- 

tions (A) through (E). 

were derived by: 

These conditions a r e  not necessary  because they 

representing the four functions 1(dyy',t!), Wdk,y'yt)y WR(x,yyt), and 

R(x,y,t), and hence also their transmissivity pat terns ,  in terms 

of Four ie r  se r ies .  

choosing {see (5-44)) the "space integration interval" vT equal 

to the fundamental (space) period 2a - i n  the x-direction - of 

the transmissivity patterns 

choosing, in the x-direction, the basic interval (of expansion) 

of the four two-dimensional Fourier  s e r i e s  equal to the funda- 

mental period 2a  of the transmissivity pattern in this direction, 

and by 

choosing not to take advantage of the possibility that the weighting 

functions can be required to have "internal periodicities", a s  

described la ter .  

1 

We have hitherto used the symbol 2a to denote both the fundamental period 
of the moving transmissivity patterns and the interval of expansion of the 
four two-dimensional Fourier  ser ies .  W e  shall in the future have occasion 
to use Fourier  s e r i e s  expansion with basic intervals  different f rom the 
fundamental period of the moving transmissivity patterns.  The symbol 
2a" will be used for such intervals. 
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These choices a r e  equivalent to additional restrictive assumptions. The im- 

plications of assumptions (b) and (c) a r e  now discussed in detail; some of the 

implications of the other assumptions a r e  discussed in other subsections. 

The functions I(d,y',t') and R(x,y,t) a r e  uniquely specified in the interval 

2a along the x-axis and the interval 2b along the y-axis by the Fourier  s e r i e s  

(5-1) and (5-2) because we have chosen the fundamental periods of each of 

these two se r i e s  equal to the same two intervals 2a and 2b. However, we only 

need these functions to be specified in the intervals 2a' and 2b', and hence we 

could also specify I(d,y',f) and R(x,y,t) by Four ie r  s e r i e s  with fundamental 

periods equal to 2a' and 2b'. Since intensity distributions a r e  in practice 

always bandlimited, i t  follows that fewer spectral l ines  (Four ie r  coefficients) 

a r e  required to determine uniquely I(d,y',t') and R(x,y,t) when 

a = a' and b = b' (5-59) 

than when 

a > a' and b > b'. (5  -60) 

Fur ther ,  because of the assumptions made under (b) and (c)  above, 

it follows that the distance traversed by the transmissivity patterns during 

the interval of integration T is equal to the chosen common fundamental 

period, 2 a ,  for the four functions 1(2,y',t') , R(yy,t) , Wfid,y',t') , and WR(x,yJt). 

Consequently, i f  we 

(1) choose 2 a  la rger  than Za', we overspecify the functions I(x!,y',t') 

and R(yy,t) , and i f  we, 

( 2 )  choose 2 a  equal to 2a' , we limit the distance t raversed  by the 

transmissivity patterns during integration to the common width 

2a' of the original image and its replica. 

The above discussion suggests that we should consider the possibility 

of obtaining perfect replicas by using weighting functions W d -vt,y') and 

W (x-vfy) having transmissivity patterns Wfix',y') and W ( s y )  formed with se t s  R R 
of patterns whose members  have the following properties:  

rc 

( 1 )  Each member M .(d,y') and MRdx,y) of Wid ,?)  and WR(qy) 

respectively, has  a length 2a" and a width 2b' and can therefore  
1, J 1 
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be represented by a Fourier s e r i e s  with the same fundamental 

periods 2a" and 2b'. 

The patterns TjI,y') and %k(x,y) a r e  the same when j i s  equal 

to k. 

This corresponds to removing condition ( c ) .  

( 2 )  
1 

Because of (2) above, we may therefore write 

(5-61) 

The transmissivity patterns Wix',y') and WR(x,y) are formed by using 

a number,  say J ,  of member-patterns Mix',y') and M l y y ) ,  respectively, with 

common boundaries parallel  to the y-axis ( see  Figure 3 ) .  We shall refer  to 

the two fo rmer  transmissivity patterns as W-patterns and to the two la t ter  

transmissivity patterns as M-patterns. The transparent a r e a s  of two adja- 

cent M-patterns a r e  separated by a distance 2a' to ensure that a transparent 

a r e a  of one such member is not illuminated at the same time a s  that of an 

adjacent member.  

J J 

Each M-pattern has a length 2a" and a width 2b', where 

2a" = 2a' t de 

with 

d = dt e 

(5-62) 

( 5 - 6 3 )  

where 4 i s  the length of the region containing transparent a r e a s  and d is the 

excess  length of M-patterns over the length, 2a', of the common aperture  of 

the original image and i t s  replica. 

2a" and to the speed v of translation by 

e 

The integration interval T is related to 

2a"J = vT; ( 5 -64) 

and the replica obtained at the end of this  interval is - since the operations 

a r e  l inear  - the sum of the successive repl icas  R(x,y,i$ obtained by moving J 
the corresponding pair  of patterns M(x',y') and ac ross  the original 

J 
image I(b,y',L-l) and the uniform illumination 

R,k(YY) W e  may attribute this property to the patterns M (2,y') and M 

because by assumption, the patterns Wj2,y') and WR(x,y) a r e  the same. 
J7J 
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Figure 3 .  Transmissivity Pa t te rn  Satisfying the First 
Set of Less Restrictive Conditions 



J 

j = 1  

(5-65) 

The expressions for  dl)*(t') and @'L:)(t) given by (5 -38)  and (5-35) mn  
are the particular f o r m s  taken by the weighting functions when they are in- 

strumented by moving (translating) time-invariant W-patterns. 

these expressions in (5-25), we obtain 

By using 

h - 1  (5-66) 

But, because of (5-41) through (5-45),  

dt = T6,,, 

h - 1  

and hence 

(5-67) 

(5-68) 

The synchronization of the weighting functions may be chosen (see  equations 
(5-49) through (5-52) so as to eliminate the exponential factor in (5-68). 2 

We shall  therefore write 

(5-69) 

~- 

This is t rue even i f  the transmissivity patterns of the two weighting 
functions are different. 
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Because the separation between transparent a r e a s  of any two adjacent 
M-patterns has been chosen large enough for light to get through only one M- 
pat tern at  any given t ime,  we can assume that each M-pattern is  par t  of a 
periodic pattern in  the x-direction consisting of contiguous identical patterns,  
and that we use only one member of each such periodic pattern in  forming the 
replica Rj(x,y,&). Let R(x,y,k) be the contribution to R(x,y,k) obtained by moving 
a pa i r  of identical M-patterns across  the original image I(x!,y', t)  and the uni- 
form illumination vt). Then, because we may assume each M-pattern to be 
a single period of a doubly-periodic pattern, we may, by analogy with (5-66) 
(which holds when the basic interval (of expansion) 2a for all four two- 
dimensional Fourier  series i s  equal to the fundamental period of the t r ans -  
missivity patterns ), write 

J 

2 

(5-70) 
Q) 

(I):yR) . R. J , r S  (k) = 4a"b'CTJ n= cIrn(k-l-T)M -m j,rn j , r s  ' 

where R. (k), f'j,rn, (1) and M(R) represent the spatial line spectra of R(x,y,k), 
J,rS j , r s  J 

?(')(2,y'), and M(R)(x,y), respectively, and of their  corresponding three 
J 

doubly-infinite se t s  of identical functions obtained by displacing the original 

functions through all integral multiple values of 2a" in the x-direction and of 

2b' in  the y-direction; and where 

rn 
1 T = -  

J J  (5-71) 

It follows from (5-65) - since Fourier s e r i e s  t ransforms a r e  l inear -, that 

J 
(5-72) 

j=  1 

Consequently, substituting in this relation the expression of R. 

by (5-70), we obtain (at the instant 5) 
(&) given J, S 

f 

To obtain a perfect replica we must have 

(5-73) 

(5-74) 

and this relation is  t rue  if  

Note that, although the fundamental period of individual M-patterns is as-  
sumed (for  the purpose of expansion) to be 2a", the fundamental period of 
the W-patterns i s  2a. 
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for 

n # s ,  

and i f  

J J 
1 

= c(.,, s i 2  = 4a1'b'CTJ 
j = l  j = l  

(5-75a) 

(5  -75b) 

(5-76a) 

for 

n = s. ( 5  -76b) 

Conditions (5-75) and (5-76) correspond to conditions (5-53) and ( 5  -54) in 

the case of the M-patterns.  

that is ,  by 

They can a lso  be expressed by a single equation, 
J 

J 

(5-77) 

These conditions for the M-patterns are less restrictive than those 

for the W-patterns because the former conditions impose only a single condi- 

tion on the sum of the M-patterns and not on each individual M-pattern. 
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5 . 4  General Fo rm of Physically Realizable Weighting Functions Satisfying 
the F i r s t  Set of Less Restrictive Conditions 

We shall now show that there  exist M-patterns which satisfy the 

conditions (5-75) and (5-76)  if - as i s  always true in practice - the relevant 

functions a r e  bandlimited. 

Mj(x,'y') and h2(x,y) of Wix',y) and Wdyy), respectively, consist of identical 
J 

t ransmissivity patterns that a r e  displaced successively through distance 2b'/J 

parallel  to the direction normal to the velocity of v of translation. 

write 

To this end, we consider the case when the members  

That i s ,  we - 

(5  -78) 2b' h/L(d,y') = M ( d , y ' - j F )  (j=1, 2 , .  . . J )  
J 

and 

It follows that the spatial line spectrum M 

given by 

of either of these functions i s  
J Y  mn 

n -i2~rj- J 
n 2t3 

mn mn 

-i2~r- - j 2b' = M  e = M  e M 
j mn 

(5 -80) 

We f i rs t  show that a W-pattern consisting of J such M-patterns 

satisfies condition (5  -75). 

Because 

and be cause 

n-s  i2~rj- J = o  
j = l  

for 

n # s+KJ 

(5-81) 

(5  -82a) 

( 5  -82b) 
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where K is  an integer o r  zero,  it follows that condition (5-75) is  identically 

satisfied for all such values of n. W e  therefore need only consider whether 

this condition can be satisfied for values of n given by 

n = s+KJ (K f 0 ) .  (5-83) 

W e  shall now prove that (5-75) can be satisfied for such values of n 

provided the functions 1(2,y’), M(x‘,y’), and M(&y) a r e  bandlimited in a direction 

normal  to the velocity - v of translation. 

l imited in  a direction parallel  to  v. ) Let 

(These functions need not be band- 

- 
I = o  for ini > N ( 5 -84) Inn 

and 

M = o  fo r  Is1 > s, (5-85) r s  

where N and S are positive integers. 

are always effectively bandlimited, there always exist  an  N and S for which 

these assumptions a r e  true.  (A necess‘ary condition for  the original image 

I(x!,y’,&) not to be degraded is that 

Since physically realizable functions 

S ZN.) (5  -86) 

Then, i f  

J >2S, (5-87) 

condition (5-75) i s  always satisfied because, on account of relation (5-83), 

ei ther 

Is1 > s ( 5  -88a) 

and/or  

In1 > S ( 5  -88b) 

for all 

K # 0. ( 5  - 8 8 ~ )  
* 
r n  Hence at  least  one of the two factors M 

consequently condition (5-75) i s  satisfied. 

and Mrs in  (5-81) vanishes, and 
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Condition (5-87) was obtained by trying to satisfy condition (5-75). 
1 If, however, note that the weaker condition 

J > NSS (5  -89) 

is sufficient to ensure perfect replication when the M-patterns have the 

general fo rm given by (5-78) and (5-79). W e  show them as follows. 

Because of (5-84), we a r e  interested only in  cases  when 

In1 S N .  (5-90) 

In these cases ,  since f rom (5-83) 

s-n = -KJ (5-91) 

and cons e quently 

Is-nl= lKJl , 

it follows that 

Is-nlB N+S 

when 

J > N+S and K f 0. 

But 

Is-nl s l s l + l n l ,  

and therefore,  using (5-93), 

N+S -= Is-nl sls l  +In1 

so that 

N+S < Is1 + In1 

o r  

>NtS -bI. 

Moreover,  f rom (5-90) 

N-bI 2 0, 

so that,  substituting in (5-96), we obtain 

Compared to condition (5-84). 

(5-89) 

(5-94) 

(5-95) 

(5-96) 

(5-97) 

(5-92) 

(5-93) 
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(5-98) 

o r  

Is1 > s. (5  -99) 

Fo r  values of S satisfying this last inequality, all the t e r m s  on the right-hand 

side of (5-73) vanish and consequently condition (5-89) is in fact sufficient to 

ensure perfect replication. 

We note by examining (5-73) that i f  the resolution of the integrating 

screen,  on which the replica i s  displayed, i s  limited so that 

R = o  for Is1 ' s, (5-1 00) r s  

the same value of J will ensure that a spectral  line of the original image 

contributes only to the proper spectral line of the replica. 

an  argument s imilar  to  that used above since the limited resolution of the 

integrating screen has an effect equivalent to that of the limited bandwidth 

of M ( R ) ( ~ y ) .  

This follows by 

We next note that 

j = l  

for 

n = s, 

so that,  because of (5-81) and (5-71), condition (5-76) becomes 

for 

n = s. 

( 5 - 1 01 a)  

(5-1 01 b) 

(5-102a) 

(5-102b) 

This condition can always be satisfied, in principle, provided the original 

image is bandlimited, that is provided 
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I = o  
lnn (5  -1 03a) 

for 

m > M  and/or n > N ,  (5-103b) 

where M and N a r e  finite positive integers. 

practice for all spectral l ines of interest ,  that is, for all spectral  l ines  I 
of a physically relizable image that contain significant intensity. 

i s  discussed in detail in Section 6 .  

It can a l s o  always be satisfied in 

mn 
This subject 
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5. 5 Second Set of Less  Restrictive Conditions 

In Subsection 5. 3 we derived l e s s  res t r ic t ive conditions for the 

t ransmissivi ty  patterns of the weighting functions than those derived in Sub- 

section 5.1. 

given in Subsection 5. 2. 

res t r ic t ive conditions on the transmissivity patterns by removing the r e s t r i c  - 
tive as sumption (d) . 

This was achieved by removing the restr ic t ive assumption ( c )  

We now seek to discover an alternative set of less 

We choose 

(4) 

o r  

the basic intervals (of expansion) of the Fourier  se r ies  

representing the original image, its replica,  and the 

transmissivity patterns , equal 

(i) in the x-direction, to the fundamental period 2 a  of 

these transmissivity patterns in this direction, and 

equal 

(ii) in the y-direction, to the width 2b' of the original 

image and its replica. 

the basic interval 2 a  equal to vT; 

internal periodicities for  the transmissivity patterns in 

directions not parallel to the x-axis and the y-axis such 

(see  Figure 4) that their  fundamental periods have x and 

y-components equal to  2a(a'/a) and 2V(aa ' / a ) ,  respectively, 

while retaining periodicities with a fundamental period 

equal to vT in  the x-direction and a fundamental period 

equal to 2U in  the y-direction. 

the product vT so that the ratio a'/a is an integer J .  

r t n  

r n  rn '  (5-1 04b) 
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and 

- r+s 

r s -  rs  (5-1 05) 

We now assume that 1(2,y’,t) and R(x,y,t) contain the same internal 

periodicities inside the region delineated by the basic intervals 2a  and 2b’. 

This assumption, although it  in no way affects the form of these functions 

inside the aperture  bounded by 

x = + - a’ and y = t - b‘, (5-1 06) 

does allow one to represent  the original image, its replica, and the t r ans -  

missivity patterns,  in terms of the same spectral  lines. 

write,  by analogy with (5-94) and (5-95), 

It also allows us to 

r t n  -i21~- 
= I  

r n  I e  r n  

r t s  -i2nT 
and 

= I ?  
r s‘ R e  r s  

Because 

r t n  -i21~- J = 1  e 

only for  

r+n - -- K1 J 
and because 

r t s  -i2~r- J = 1  e 

only for 

(5-107) 

(5-108) 

(5-109) 

(5-110) 

(5-1 11) 

(5-1 1 2 )  

where K and K a r e  integers,  it follows that we need only consider the 

values of n and s for  which 
1 2 
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n = 5 J - r  

and 

(5-1 13) 

s = y - r ,  (5-114) 

respectively. 

the choice of internal periodicity, which leads to equations (5-1 04) through 

(5-105), requires  that all spectral  lines vanish except those for which the 

2 exponential fac torsare  equal to unity - that is, those for which K1 and K 

are integers.  Consequently (5-69) becomes 

This i s  t rue  because all other spectral  l ines vanish. That is ,  

(5-1 15) 

F r o m  equation (5-11 5), it is  easy to derive a sufficient condition on 

the weighting function spectra  for perfect replication, namely 

55 
6 

- w 
r,KtJ-r r,5J-r - 4ab'CT . k' 

As in Subsection 5.4, i f  

I = o  mn for n > N  

and 

M = o  for  s > S Z N ,  r s  

the orthogonality condition can be satisfied by choosing 

J >2S. 

(5-1 16) 

(5-117) 

(5-118) 

(5-1 19) 

The argument leading to the weaker condition 

J >N+S { 5-1 20) 

a lso applies, and so do the comments concerning an integrating screen  of 

l imited resolution. 

all the t e r m s  in (5-115) vanish except those for which both K1 and K2 a r e  

zero. Consequently, (5-1 1 5) now becomes 

It follows that, when J sat isf ies  condition (5-1 20), 
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(114 (R) 
8 (k) = 4ab 'CTI  ( L - l - ~ ) h :  W r, -r r, -r r,-r r , - r '  

and hence the condition for  a perfect  replica is 

( 5 -1 21 ) 

(5-122) 

We note that no condition corresponding to the "orthogonality" requirement 

expressed by Condition I is necessary. 

representing the functions 1(2,y',t'), W$x',y',t'), WR(qy,t) , and R(qy,t) ,  in such 

a way that the only non-zero spectral  l ines  lie on a single "diagonal" l ine in 

the spectral  domain. 

We have, in effect succeeded in  
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5 . 6  General F o r m  of Physically Realizable Weighting Functions 
Satisfying the Second Set of Less  Restrictive Conditions 

2a .2b' (5-123) J M p y )  = M(x-j- Y-JJ--) 

be the fundamental functions from which we construct the transmissivity 

patt e r n s  

J 

j=1 

and 

J 

(5 -1 24a) 

(5 -1 25b) 

j=l  

of length 

2a = vT (5-126) 

and width 2b'. 

by expressions of the form 

Hence the spatial spectra of these two functions a r e  both given 

r t s  -i2rrj- J 
w = M r s x e  J 

r s  1 (5-1 27) 

j = l  

where M represents  a Four ie r  series expansion of M(x,y) over the intervals r s  

2a = vT (5-128) 

(and 2b equal 2b'), and not over the intervals 

Hence 

w = o  for s # KJ-r r s  

and 

W = J M  for s = KJ-r, r s  rs  

(5-129) 

(5-1 3 0 )  

(5-131) 
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where K is  an integer. Consequently the only non-zero t e r m s  of w a r e  r s  

(5-1 32) 

and if upper l imits  a r e  placed on the spectral  l ines ,  as discussed in the 

previous subsection, the only non-zero t e r m s  a r e  

= JM . r, -r r, -r w (5-133) 

It therefore  follows f rom (5-109) that the condition for a perfect replica is 

(5-134) 

This condition can always be satisfied for physically realizable functions. 

Similar comments to those made at the end of Subsection 5 .4  apply. 

We have thus found that physically realizable weighting functions 

exist that consist of patterns M(x,y) which need not contain opaque regions of 

length d to prevent light f rom illuminating transparent portions of two adja- e 
cent pat terns  simultaneously. 

transmissivity patterns consisting of t ransparent  a r e a s  - as well as  of a 

single transparent spot - that provide perfect replicas.  

J 

In other words, we have proved that there  exist 
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I , -  

I 
I 
1 

5. 7 Alternative F o r m  of Physically Realizable Weighting Functions 
Satisfying the F i r s t  Set of Less  Restrictive Conditions 

We return,  now, to the situation described in 5. 3 above, where 

W(x,y) consists of a set  of pat terns  M(x,y) with the several  member patterns 
J 

of the set  separated (in the x-direction) by opaque regions of length 2a' so 

that there  is no interaction between different member patterns.  

basis ,  we derived the condition 

On this 

J L 

(5-135) 
J j = l  

In 5 .4 ,  we described a set  of patterns M(%y) which satisfy this  
J .  

condition. We now describe another set. (It is convenient, at this point, 

to drop the distinction between 

K 

k= 1 

where 

Then, expanding P(x,y) over the region 2aI' by 2b', 

"(jk "qj, 
-i2~r(- + -1 2a" 2b' = P  e 'jkmn mn 

and 

m'jk + "'jk) 
2b' -i2~r(- K K 

2a" M. =C<kmn = P  mn Ce 
Jmn 

k= 1 k= 1 

We now suppose that the 2JK quantities 

independent of each other,  and that 

(5-1 36) 

(5-137) 

(5-138) 

(5-139) 

ejk and 7) a r e  statistically 
jk 

(a)  the quantities 5 a r e  randomly distributed over the interval 
j k  

f rom -a1! to +a'!, having uniform density with respect  to j and 

k, and 
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(b) the quantities V a r e  randomly distributed over the interval 
jk  

f rom -b' to +b', having uniform density with respect to j and k. 

Now let  

m s k  "'jk K 

c e  j m n '  

-i2n(- Za1I + r) 
: E. 

k= 1 

so that 

M. = P E. jmn m n j m n  

and 
.I. I$? M. = p* P E:' E. j r n j r s  r n  r s  j r n  j r s '  

(5  -1 40) 

(5  -141) 

(5 -1 42) 

We now observe that 

E. = K .  (5  -1 43) 
3 0 0  

F o r  the general case E. 

value of" IE. 

viation of the estimate will be small compared to the estimate itself. 

have 

we can estimate <b. 12>, the "expected 
jmn'  Jmn 12, on a statistical basis. If K is large,  the standard de- 

Jmn 
We 

\k=l  k'= 1 

\k=l  k'=l / 

k=l  k'=l 

There a r e  K separate t e r m s  in the double sum for which 

k' = k. 
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t - -  

Each of these reduces to unity. 

(K  -K), each take the form 

The remaining t e r m s ,  of which there a r e  
2 

Since the factors  are statistically independent, the expected value of this 

product is  simply 

and all four factors  vanish. Accordingly, 

for m # 0 and/or  n # o .  

Using these resu l t s  f o r  the case 

n =  s, 

we have 

M? M. = P * P E. * E. = F* P IE. 1'; j r s  j r s  r s  r s j r s j r s  r s  r s  J r S  

so that 

M? M. = P  * P K 2 
JOO JOO 00 00 

and 

(5-146a) 

(5-146b) 

(5-147) 

(5  -1 48) 

(5-149a) 

for  r # o and/or  s # 0. (5-1 49b) 

Since # M. 
over j to f o r m  

a n d e ?  M. > are rea l  quantities, we can sum directly 
JOO JOO J r s  J r s  
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J 

j= l  

and 

for  r # 0 and/or s # 0. 

Fo r  the case 

n f s ,  

we have 

J 

j = l  j = l  

and 

Now 

/ J  \ / J  J \ 
j r n  jrs  j ' rn j r s  (,lx j = l  12) = (,xE! j = l  E jt= 1 

/ J  J \ 
ET E. E, ET j r n  j r s  j r n  J'rs 

J J  
E:' E. E., E: =cc (& j r n  j r s  j r n  j'rs 

(5-1 50) 

(5  -1 51 a) 

(5-151b) 

(5-1 52) 

(5-1 53) 

(5-154) 

(5-155) 
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In the sum on the right, there  a r e  J t e r m s  for which 

J' = J 

F o r  these,  we have 

(5-1 56) 

since E. 

ferent  f r o m  s. 

and E. a r e  statistically independent quantities when n is dif- 
J r n  J r s  

For the remaining t e r m n u m b e r i n g  (J2-J), we have 

.b .I. .I. 

since the four quantities E. are statistically inde- 

pendent when n is  different f r o m  s and j' is different f rom j .  

different f rom s ,  at least  one of the four quantities 

E? 

of the expected values on the right-hand side of (5-157) is zero. 

all terms with j' different from j vanish. 

j r s '  Ejkn? and Ej,rs 
Because n is 

.b 

and Ejrsl Ejkn* 
has  a third subscript different f rom zero; consequently a t  l eas t  one 

J 'rS 
Hence 

This is t rue  because E. (where m and/or n is non-zero) isa 

quantity with a mean-square amplitude of K and a uniformly distributed 

random phase angle. 

Jmn 

Hence i t s  expected value i s  zero. 

On the basis  of the above argument - which applies when n is 

different f rom s - we have 

/ J  \ J 

Hence 

(5-158) 
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/ J  \ { lx$ J O O  M. J O S  1 2 )  = 00 P o s  I2dJ 

for  

r # o  and/or  /:.'d 
s # 0. 

for  s f 0, 

The condition on the M ' s  are  ( see  Subsection 5 . 3 )  
J 

6 n s  
J 

j r n  r s  4a"b1CTJ * 

j = l  

This may  be rewrit ten a s  

3 
4a"b'CTxH! M. = . 

J j r n j r s  n s  
j = l  

We do not attempt to meet  the 

(5-160) 

( 5 - 1 61 a) 

(5-1 61b) 

(5-77) 

(5  -1 62) 

condition in this form,  since - in the case 
considered in this subsection - the left-hand side is  only known in a 

statistical sense. 

condition 

Instead, we substitute the statistically equivalent 

j = l  
(5  -1 63) 

Using the values for  the expected value 

J 

j = l  

given in (5-159) through (5-1 61), we obtain the five following conditions. 
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I - -  

F o r  the case 

n # s, 

we have the three requirements 

for  

r f o  and/or  

and for the case 

n = s, 

we have the two requirements 

(4a"19CT)21P* 00 P 00 k4 = 1 

(4a"lJCT)2b* rs  P r s  1% = 1. 

for 

for 

(5-1 64) 

(5-165) 

(5-166) 

(5-1 67a) 

(5-1 67b) 

(5-168) 

(5-169) 

(5-1 70) 

We note that the conditions (5-165) through (5-167) can be satisfied 

exactly when J is infinite, that i s ,  when the transmissivity patterns a r e  

infinitely long. However, we can make the expressions on the left-hand 

side of these equations as small  a s  we wish by choosing J la rge  enough - 
and thus also make the unwanted contributions to the replica as small as we 

wish. The relation between the "noise" produced by these unwanted contri- 

butions and the number J is discussed later in this Subsection. 

It can be shown that condition (5-1 69) cannot be satisfied with 

non-negative transmissivit ies when K i s  greater  than unity, and hence 

cannot be satisfied with physically realizable weighting functions. 

to  satisfy this condition resul ts  in too high a value of ,? 

Failure  

. This 
00 
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corresponds to the superposition of a spatially uniform intensity level on 

the otherwise perfect  replica. 

integrating screen t h  a t  permits  us to subtract this unwanted uniform 

intensity - for example, by optical quenching - without otherwise affecting 

the replica. 

able in  electrical  form in the receiver. 

This situation can be corrected by using an 

The information needed to control this subtraction is avail- 

Librascope has  an  integrating screen with this property. 

We note that a condition equivalent to (5-169) does not appear in 

our previous discussion on non-random transmissivity patterns. The 

reason for this fact is that no explicit assumption was made about the 

specific form of each M-pattern. 

would have discovered the need for imposing a condition equivalent to 

(5-1 69) to ensure perfect replication in cases  when each M-pattern consists 

of more  than one element (aperture).  

Had we made such an assumption, we 

W e  mentioned ear l ie r  that the expressions on the left-hand side of 

equations (5- 165) through (5- 167) can be made as small as we wish by 

choosing J la rge  enough. W e  now derive an expression for the noise in the 

repl ica  resulting from the unwanted signals that occur when J is finite; we 

also derive the corresponding replica signal-to-noise ratio. 

By ando gy with (5- 2) 
ob ob 

where 

ob 

Rrs(tk) = 4a" b' CT. 3 Cn(L-1 
n= -ob 

The desired portion of the repl ica  i s  

n = s  

J 
* 

-7) c M:' M. j r n  jrs. 
j =1 

formed by the t e r m  for which 

(5-171) 

(5- 172) 
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The remaining t e r m s  produce unwanted signals which contribute to - what 

we shall call - a "confusion picture of the first kind". 

I?(')(\) is given by 
This picture 

r s  
00 J * 

1rn(tk-l-7) c Mjrn  "'jrs, n # s (5-173) Rrs  (1) (L) = 4a"W'CT. 
J 

so that 

00 00 / J  J \ 

nf and n' # s. (5-1 74) 

Now consider 

/J J \ 
* 

MY M M, ,M* j r n  jrs j rn  j'rs 

J J 

j = 1 j k  1 
(5- 175) 

F o r  all t e r m s  with jl different from j, 

The same thing is t rue  of their transforms, 

Hence 

and M. a r e  statistically independent. 5 J 

( M ? M . M  j r n  jrs j'rn' 4 )  j rs  

(5- 176) 
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However 

J- 

14: M = P* P j r n  J r s  r n r s  

and 

q!: j r n  M. jr J=P* r n  P r s  
\ k = l  F = l  / (5-178) 

Fur  the r 

/ K  K 

(5- 179) 

k = l  k ! = l  

, and qjp,  all t e rms  $k* 32' 3 k  
Because of the statistical independence of 

on the right-hand side of (5- 179) with k' different f rom k can be written as 

This product vanishes, except when 

r = n = s = o  (5-181) 

in which case it is equal to unity. Consequently, since we a r e  considering 

only the case for which n is different f rom s, we can drop from (5- 178) all 

of the t e r m s  for which k' is different f rom k. Then (5-178) becomes 

i2nz t ; s  tjk), 
= p e p  

k =  1 j r n  jrs r n  r s  

which vanishes whenever n is different f rom s. 

F rom (5-182), both sides of (5-176) vanish when 

(5- 182) 

j' f j  and nf and/or n' # s. 
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Accordingly, we can rewrite (5-1 74) as  

n f  s and n' # s 

Again, consider 

J 

J=l  

( 5 -1 84) 

(5-184) 

By an argument similar to that which lead to (5-182), this vanishes whenever 

n' is different f rom n. Using this  result in (5-184), we have 

n f  s 

We a r e  not interested in the special case 

(5-1 86) 

since this contribution is subtracted from the integrating screen. 

other cases ,  

F o r  all 

(5-187) 

and we have 
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for 

n f  s 

F o r  the general case,  when r i s  different f rom zero 

(5-188a) 

(5-188b) 

and we have 

F o r  the special case where r is zero,  we note that 

M ?  M. = IP 12K2 
J O O  J O O  00 

(5-191) 

so that 

I f ,  a s  is reasonable, we transmit only  the a c  component of the photo- 

sensor output and omit the dc component, this has the effect of removing 

Ioo(t,-1-7), and (5-190) holds for all values of r.  
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We now note that the space-variance of the confusion picture i s  given by 

(5-1 93a) 

for 

r f o  and/or s # 0. 

U sing ( 5 -1 90) , we have 

(5-1 93b) 

(5-194) 

Where, f rom (5-193), we omit the te rms  for  which both r anc s a r e  zero.  

Fur ther ,  since we have removed loo(k-1-7), we omit the terms for which both 

r and n a r e  zero. 

so that for all terms of interest  

W e  now suppose that condition (5-169) has  been satisfied, 

2 1 
IprJ = 4a"b'CTK 

Then we have from (5-194) 

for 

s # 0. 

But 

the space -var ance of the original image so that, f rom (5-196) 

(5-195) 

( 5 - 1 96a) 

(5-1 96b) 

(5-197) 
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8 7 .  

I 
I 
1 
u 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 

W 

2 = s c  1 q - 7  2 1 u2 I .  
OR1 s=  - w  

for 

s # o  

(5-1 98a) 

(5-198b) 

In fact, we do not run over the full range of s in (5-198), but only between 

limits + - S ,  where S i f  defined by t h e  relation 

P r s  = o  for 1s l > S  2 N  (5-199) 

where N/2b1 is the highest spatial frequency of the original image in  the y- 

direction. Hence, finally, 

2s-1 2 - -  
J O I  a 

(5  -200) 

2 It is reasonable to take the quantity uR 
(or  noise) corresponding to the confusion picture of the first kind. 

refer to this quantity as "confusion noise of the f i r s t  kind" and define the 

replica signal-to-noise ratio (S/N)R 
1 

as a measure  of the unwanted signals 
1 We shall 

corresponding to this noise by 

2 

(5 -201) S - =I (fl) =2 
R1 OR1 

Hence, f rom (5-201) and (5-202), 

S - J (w) - -  2s-1 
R1 

(5  -202 

The confusion picture of the first  kind a r i s e s  f rom a failure to meet  the 

conditions (5-165) through (5-167). 

"orthogonality" condition, in  addition to this confusion picture,  we also get  - 
what we shall call - a "confusion picture of the second kind'' because we have 

satisfied conditions (5-169) and (5-170) only on the average. 

occurs  whenever 

We shall refer  to these conditions a s  the 

This picture 
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The corresponding noise - which we shall re fe r  to a s  "confusion noise of the 

second kind" - can also be made as small as derived by choosing J large 

enough. We shall now prove this statement. 

1 
I 
I 
I 

To this end, we s ta r t  by considering the t e r m s  of the replica for 

which n is different f rom s. These a re  
rx sy 

OD OD J i27~(-t 2a" - 2b' ) 
4a"b'CT J I rs  (L -1 -T)&M? J r s  M. J r s  e 

r=-OD s z - 0  
( 5  -204) 

Assuming that the functions M.(x,y) have been properly chosen so that J 

( 5  -205) 1 
4a"b'CTJ ' 

there  remains a second confusion picture F!2)(lsy,&) which resul ts  - as 

mentioned earlier - f rom the fact that conditio-( 5-1 69) and (5-1 70) have 

been satisfied only on the average. W e  have 

( 2 )  The expected value of R 

value of every t e r m  on the right-hand side of (5-206) is zero because 

(x,y,&) is zero at  every point, since the expected 

(5  -207) 

Then, the confusion noise of the second kind o2 is given by 
R2 

r f o  and/or  s # 0. ( 5  -208b) 
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- 

I -  
I 
1 
I 
I 
I 
1 
I 
I 
I 
I 
I 

I 

We observe that 

J J 

j r s  j r s  
j = l  j = l  

2 
, 

which is  a rea l  quantity. Then 

( 5 -209)  

and we can write (5-208) as 

and/or s # 0. (5-21 Ob) 

W e  now recall ,  f rom (5-141.), that 

M. = P  E .  jrs  rs  jrs 

so that 

J J 

j = l  j = l  
and 

(5-21 1 )  

(5-212) 

(5-21 3) 
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I 
I 
I 
E 
I 
I 
I 
I 

In  o rde r  to evaluate the second te rm on the right-hand side of (5-213), we 

wri te  

we know, f rom (5-146) above, that 

for  

r f o  and/or  s # 0. 

Hence, 

In o rde r  to evaluate the first t e r m ,  we write 

J n  J 

( 5  -214) 

(5-21 5a) 

(5-215b) 

(5-216) 

( 5  -21 7) 

2 For  the terms, (J -J) in number, on the right-hand side of (5-117) for which 

j 1  
pendent of each other so that 

is different f rom j ,  we recall  that Ejrs and Ejlrs a r e  statistically inde- 

(5-218) 2 I 
D 

( IEjrs12 IEpr-s12) = ( IE j r sP  ) ( IEjlrs12 ) = K 

Consequently (5  -1 1 7) becomes 

I (5-219) 

In order  to evaluate ( I E j r s r )  , we recal l  f rom (5-140) that I 
I 
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R 
I 
I 
I 
I 
1 
I 
E 
t 
I 
1 
I 
I 
I 
I 
-I 
i 
8 
1 

(5-220) 

k= 1 

so that 

) 
2b’ . (5-221) 2a” * e  

K K  

k . p  3’1 

$9 3’ % can be written a s  a quadruple sum over indices 4 Therefore lEjrsl 
and k with the sign of the exponent positive for 4 and S and negative for 

5 and k4. 4 When we consider the K t e r m s  in the quadruple sum, we find the 
4 

P 

There a r e  K t e rms  in which all four subscripts ($, 5, S ,  and 

k ) have the same value. 

t e r m s  is  1. 

There are 4K(K-1) te rms  in which three subscripts have the 

same value and the fourth has  a different value. 

value of each of these t e rms  is  zero. 

There are K(K-1) t e rms  for which $and 5 have one value and 

% and k have another value. 4 
these t e r m s  i s  1. 

There a r e  K(K-1) t e rms  for which l j  and 5 have one value and 

5 and k have another value. 

these t e r m s  i s  zero. 

There are K(K-1) t e rms  for which 3 and k have one value and 

3 and 5 have another value. 

t e r m s  is one. 

There a r e  K(K-l)(K-2) terms in which three of the subscripts 

have different values and the fourth subscript has a value equal 

to one of the other three. 

t e r m s  i s  zero. 

The expected value of each of these 4 

The expected 

The expected value of each of 

The expected value of each of 4 

4 
The expected value of each of these 

The expected value of each of these 
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(g) There a r e  K(K-l)(K-2)(K-3) t e r m s  in which all four subscripts 

have different values. 

is zero. 

The expected value of each of these t e r m s  

Thus, in examining the expected value of the quadruple sum which is 

equal to I F r s r ,  we have 

2 (2k -k) t e r m s  with a value of 1 

(k -2k tk) terms with a value of 0 4 2  

and 

( kjrs14> = 2K 2 -K. 

Using (5-222) in (5-219), we have 

( bjrs12 ') = (J2-J)K2 t J ( 2 K k )  = J 2 2  K t JK2 - JK. 
j= 1 

Substituting (5-216) and (5-223) in  (5-213), we have 

Substituting, in turn, this expression into (5-210) we have 

(5-222) 

( 5  -2 23) 

(5  -224) 

(5  -225) 

F r o m  (5- 17q, we recal l  tha t  P(x,y) was chosen so that 

4a'WCT J IP r s  I3d= 1 ( 5  -226a) 

r f o  and/or  s f 0  ( 5  -226b) 

over the region of interest .  

the confusion noise of the second kind 

Substituting this value in (5-225), we have fo r  
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I 
R 
I 
I 

* 1  

Rz 
and for the corresponding signal-to-noise ratio (S /N)  

1 

J *  

2 l - K  
S 5 - ( R )  I - - -  

RL % 

(5-227) 

(5-228) 

The replica signal-to-noise ration (S /N)  corresponding to both R 
kinds of confusion noise 

1 - 
1 

t- 

- 
1 -z 2s-1 

J J 

- J -- 
2S-K 1 

Therefore,  for  large values of K, we have 

(5-230) 

(5-231) 

The total displacement of the transmissivity patterns during the 

integration interval T i s  

vT = 2a"J. ( 5 -64) 

From(5-230) and (5-64 ), it follows that 

vT 
1 ( 5  -232) 

R 2ag'(2S--) K 

and from( 5-31 ) and (5- 64 ) that 

vT 
4a"S w -  

S 

for K large.  

( 5 -2 3 3) 
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5.8 Alternative Form of Physically Realizable Weighting Functions 
Satisfvine. the Second Set of Less  Restrictive Conditions. 

In 5. 5, above, we considered the case of a transmissivity pattern 

having internal periodicity, and showed that such periodicity (when properly 

chosen) automatically satisfied the orthogonality conditions. The particular form 

we choose for W(qy) in 5.6 was 
T 

J J 

where 
2a= 2 a ’ .  
J 

The equivalent of condition (5-  122 turned out to  be simply 

I 1 2  

Now, as in 5. 7, we let  

K K 

(5-123) 

(5-234) 

(5-134) 

(5- 235) 

where %and 

distributed over the intervals from - a  to  +a and from- -V to  +V respectively, 

a r e  a set  of statistically independent quantities, randomly 

having uniform 

as  was used in 

M =  mn 

density with respect to k. Following the same line of reasoning 

5.7 (cf 5-139), 

whence, as before, (cf 5-148) 

and (cf 5-149) 

(I M 1  mn 12> =IF‘ m n  I 2  K 

for 
m S o  and /or  n $ 0 .  
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(5- 236) 

(5-237) 

( 5 - 238 a) 

(5-  238b) 



From (5-134) and (5-238), we obtain for 

(5- 239a) 

for 

r =# 0. (5- 239b) 

As in the earlier case, we observe that we must subtract the dc t e r m  

which a r i s e s  for r equal to zero.  

subtracting it at the integrating screen. 

random cases,  by the highest spatial frequencies, in the y-direction of the 

original image and the transmissivity pattern. 

As before, we can remove this dc t e r m  by 

J is now determined, as in the non- 

Confusion noise of the f i r s t  kind -which resul ts  from not satisfying 

the orthogonality conditions - does not appear in this case. 

noise of the second kind -which in  this case resul ts  from randomly displaced 

versions of the desired replica -does appear when the length vT of the t rans-  

missivity patterns during the integration interval T is finite. 

derive an expression for this noise. 

However, confusion 

We shall now 

The replica contains no "non-orthogonal" t e r m s  in this case. We 

have for R(qy,t ) only k 

where 

Drawing on 5.7, we can write 
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(5-240) 

(5- 241) 

(5- 242) 



for  

r + 0. 
As before, 

M = P  E r,-r r, -r r , - r  ' 
where 

so that 

and 

- i2n(r& rqk 
= C e  - 2a  -d r, -r E 

k=l  

and 

Accordingly, 
ob 

However, over the region of interest, 

4atJCTJ lPr I K = l  
9 1  

s o  that we have 
ob 
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(5-243a) 

(5- 243b) 

(5- 244) 

(5-245) 

(5- 246) 

(5-247) 

(5-248) 

(5- 250) 

(5- 251) 

(5- 252) 



To reduce the confusion noise of the second kind, we use a t rans-  

missivity pattern of m discrete  sections, each of length 2a’J as  described in 

5.8. 

5.7, we separate each transmissivity pattern of length 2a’J by opaque regions 

of length 2d. 

The interval of expansion for  h’ and Pm, i s  now 2dJ by 2W. As in mn 

Then integrating over a t ime T, given by 

vT = 2a = m(Jt1) 2a’, 

we  obtain for the total confusion noise 
%a 

2 1-- l 2  % = % =  K 9 
2 m  

and cor r e spondingly 

( 5 - 2 53) 

( 5 - 254) 

(5-255) 

Using this value of m in  (5-253), we 0-tain for the total d-splacement vT of the 

transmissivity patterns interval T during the integration 

or  
VT 

(5-256) 

( 5 - 2 57) 

for large values of K and J. From earl ier  considerations, we require that 

, J>NtS,  

where N is defined by the relation 

P 5 0  rs for 

for 

Using this value of J in(5-257), we obtain 

S 

NR 2a’(NtS). 
(4 = VT 

(5-258) 

( 5 - 259a) 

( 5 - 2 59 b) 

(5- 260) 

We note that the same value of (S/N)R can be achieved with a shorter  
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~I 
I 
I 
1 
1 
1 
I 
1 
t 

I 
I 
I 
8 

a' <af1, 

and S is  chosen so that 

S XN. 

displacement vT when random transmissivity patterns with internal periodicity 

a r e  used instead of random transmissivity patterns without internal periodicity 

since 

(5-261) 

(5- 262) 
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5 -9 Discussion of the General Forms rf Weighting Functions Providing 
P e r ie c t Ke plic as 

We now review and discuss the resul ts  obtained s o  far  in this section. 

W e  f i r s t  derived a set  of sufficient conditions for the, in principle, 

perfect replication af bandlimited images produced by weighting functions 

impiemented with moving time-invariant transmissivity patterns (scanning 

aperture  patterns).  W e  discovered that no weighting functions of this type 

satisfy these conditions - even i f  these functions consist  of transmissivity 

patterns of infinite length. 

W e  next noticed that the sufficient conditions mentioned above were not 

necessary ones, and sought to find alternative l e s s  restrictive conditions. 

found two such se t s  of conditions, and discovered two general forms  of non- 

random transmissivity patterns ( see  Subsections 5.4 and 5.6)  that satisfy the 

first set and the second set  of less restrictive conditions, respectively.  

also discovered ( see  Subsections 5.7 and 5. 8 ) a  set  of two general forms of 

random transmissivity patterns that can also be made - albeit on a statistical 

basis - to  satisfy the first and second set of less restr ic t ive conditions, 

respectively. 

We 

W e  

W e  note that conventionally instrumented single- spot line- scan television 

is a special case of the general forms discussed in Subsections (5.4)  and (5.6).  

In effect both these forms reduce to  single-spot l ine-scan television when the 

M-patterns discussed in these two subsections consist of a single small hole. 

(Note that the length d of the opaque regions separating transparent regions is, 

for  all practical  purposes, ze ro  in this case.  ) 
e 

Instead of using M-patterns consisting of a single hole, we can use 

M-patterns consisting of a cluster of holes, possibly of different s izes  and 

shapes, to modify the frequency response of these patterns. 

M-patterns of Subsection (5. 4) -but not those of Subsection 5. 7 - must be 

separated by opaque regions of non-zero 

the properties of such patterns. 

(In this case the 

length d .) We have not investigated e 

An alternative way of modifying the frequency response of the M-patterns 

is to shade the transmissivity of each transparent element appropriately."Clear 

holes" and two types of shaded elements a r e  discussed in Subsection 6. 2. 
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We observe that the orthogonality condition ( see  5-75) ensures that no 

unwanted "spectral  components" appear in the replica, that is that the replica 

contains only spectral  components which belong t o  the original image. 

that this condition can always be satisfied in principle. 

always be satisfied in practice. 

kind" occurs  which is s imilar  in nature to  that discussed in the case of purely 

random transmissivity patterns. 

We saw 

However, it may not 

When it i s  not, "confusion noise of the first 

We also observe that the second condition ( see  5-76) ensures  that all 

the spectral  components contained in  the original image a r e  reproduced with the 

cor rec t  amplitude and phase. That is, the second condition ensures  that the 

frequency response of a pa i r  of transmissivity patterns i s  flat (and free from 

phase shift) over the spatial-frequency band containing all spectral  components 

with significant intensity; and that this frequency response is properly normalized. 

This la t ter  characterist ic of the second condition is tr ivial  and we shall hence- 
1 forth re fer  to  the second condition as the (spatial-frequency) flatness condition. 

We conclude these remarks  on spot-scan television by noting that the 

second set  of l e s s  res t r ic t ive conditions consists of only a single condition; the 

flatness condition. 

automatically satisfied by choosing the internal periodicity of the transmissivity 

patterns appropriately . 

I 
8 The orthogonality condition does not appear because it is 

We next considered two general forms of transmissivity patterns for I 
I 
I 
1 

area-  scan television. 

The f i r s t  form of random transmissivity patterns is made up of M- 

patterns of length 2a" (which normally is equal to  4a')  which in turn consist of 

randomly placed P-patterns.  These la t ter  patterns could consist of a cluster 

of transmissivity elements; however, we believe they will usually be chosen 

to consist of a single element. This type of transmissivity pattern produces 

confusion noise of the f i r s t  and second kind. 

acceptable level, we have to use successively a number of different M-patterns 

To decrease this noise to an 

'In practice perfect f latness over the band of the original image is seldom 
required, and may even be undesirable, as  discussed in Subsection 6. 3 in 
connection with equations ( 6 - 3 3 )  and (6 -34) .  
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during the integration interval T. 

The second form of random transmissivity patterns is made up of 

periodically-related M-patterns in such a way that they form a single W-pattern 

with an internal periodicity in a direction which makes,  in general, a small 

angle with the x-direction. This pattern produces no confusion noise of the first 

kind but does produce confusion noise of the second kind which can be decreased 

by using successively a number of W-patterns during the integration interval. 

However, the transmissivity-pattern length v T  required in  this case to obtain 

a given replica signal-to-noise ratio is less than that required for purely 

random patterns. 
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6. SPECIFIC FORMS OF WEIGHTING-FUNCTION ELEMENTS (TRANS- 
MISSIVITY -PATTERN ELEMENTS) AND QUALITY OF THE 
RESULTING REPLICAS 

So far we have been concerned only with the general forms  of weighting 

functions - and their  associated transmissivity patterns -that can in principle 

provide perfect replicas of bandlimited images. 

specific forms  of weighting-function elements and the quality of the replicas 

obtainable with these elements. 

function. 

with different t ransmi s sivity -pattern elements. 

We shall now consider some 

We shall f i r s t ,  however, discuss the "quality" 

This function is useful1 in assessing the quality of replicas obtained 

6. 1 The Quality Function 

W e  substitute the expression for RU(t) given by (5-16) into (2-4)  and obtain 
t,, a' b' 

This expression may be re-written as 

a' b1 
R(%Y,~) = I($,y',t-r) I C 5 * W ~ ( * , ~ , t - ~ ) W R ( ~ Y , . t J d t  I Mdy' (6-1) 

Ll 
-a' -b! 

by changing the order  of integration. By Assumption D,  the functions W and WR 

a r e  periodic with respect to t ime, having a common period 
I 

T z  -&-Il. (2-5) 
The integral in brackets then depends only on the four spatial coordinates x,y,x', 

and y'. W e  can therefore represent  it by a function Q(x,y,x',y'), so that 

a' b' 
r r  

Now let a and p be two 

a >a1 and f32b'. 

We can now write 
m aD 

Q(x,y,$,y') Mdy'. 

positive quantities such that 
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W e  can also write 

The integral  (6-9) 

z z  - r smn '  (6-10) 

This is the four-dimensional Fourier  t ransform of Q(x,y,-d-y') so that 

(6-11) 

and 
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F r o m  (6-9) and (6 - lo ) ,  we obtain 

(6-12) 

(6-13) 

In  the special case where 

= o  for m # r and/or  n # s ,  (6-14) smn 

which always happens when we have satisfied the orthogonality conditions, we 

have 

so that Q is a function only of the two differences (x-2) and (y-9) .  

(6-13) and (6-14), it follows that 

From 

and consequently 

(6-16) 

(6-1 7) 

where 2a and 2P are chosen, of course, to match the basic intervals of ex- 

pansion originally used in defining A and I . rs rs.  

F o r  the final set  of l e s s  restrictive conditions, 

(6-18) 
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o r  

(6-1 9) 

Since 

(6-21) 

( 6  -22) 

For the second set  of l e s s  restrictive conditions, we have - omitting 

the intermediate steps - 

(6-23) 

(6  -24) 

For  the purely random weighting functions of Section 5. 7, Q is defined 

only in a statistical sense as 

(6-25) 

For the quasi-random weighting functions of Section 5.8, we have 

similarly 
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6. 2 Quality Functions and Space- Frequency Functions of Three 
Different T r  ansmis sivitv-Pattern Elements (Apertures) 

In the case of a rectangular hole, of width Ay, and height Ay, the 

quality function is given by 

(6 -  27b) 

The space-frequency (response) function is given by the t ransform of a([, r)) 
and is, after normalization, 

(6-28) 

F o r  a Gaussian aperture  defined by a transmissivity function 

M(r;y) or P(r;y) having the form 

2 2 -(% t y  2 
hi(x,yj = P{x,yj = e nx n y  , 

the normalized quality function is 

and, the normalized space-frequency function is 

2 2 2  2 2  -2T (fx A X  + f  Ay ) 
Y 

6-6  

(6-30)  

(6 -31)  



For a transmissivity function 

X sin2r- s i n 2 d -  
Ax AY 

2 XY 
W s y )  = P ( s y )  = 

4lr - 
A d Y  

the normalized quality function is 

( 6  -32) 

(6-33) 

and the normalized space -frequency function is 

( 6  -34a) 

( 6  -34b) 

We cannot, of course,  instrument a negative transmissivity function - 
as implied by (6-32). 

tracting the appropriate uniform value f rom R(x,y,t) on the integrating screen 

on which the replica is displayed. 

We can, however, achieve the same effect by sub- 
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I 
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I 
I 
I 
I 
I 
I 
I 
I 
D 
I 
I 
I 
I 
I 
I 
I 

6. 3 Re solution 

We have seen that no confusion noise exis ts  in the case of a spot-scan 

system when the orthogonality condition is satisfied. 

fineness of detail of the original image which is reproduced in the replica 

depends entirely on the quality function. 

required to satisfy the orthogonality conditions when the quality function is 

rectangular than when it has  the  form sinx/x. 

finite number of such l ines is  required in the former  case and a number of 

l ines  equal to 2N in the la t te r ,  where N is such that 

Hence in this case the 

However, more  scanning l ines  a r e  

In effect, in theory, an in-  

I = o  for n > N .  (6-35) Inn 

(In practice of course only a finite number of spectral  l ines with significant 

intensity exists in the spatial-frequency response,  and hence the number of 

scanning l ines required to avoid detectable confusion noise is finite). 

We now define the resolution of the replica to be the fineness of its 

detail in the absence of any noise and, in  particular,  of confusion noise. 

quality function, o r  the spatial-frequency function, c lear ly  provides an ex- 

cellent description of this resolution. We note that the resolution provided 

by a quality function of the form sinx/x is much coarser  than that provided 

by a "rectangular" quality function when both of these functions refer to 

aper tures  of the same size. The "gaussian" quality function represents  a 

useful compromise between the conflicting requirements of fine resolution 

and the absence of confusion noise. 

The 

We now discuss the resolution provided by the normalized gaussian 

quality function (6-30) and its corresponding t ransform (6-31) when the 

dimensions of the aperture  a r e  

Ax = Ay = A .  ( 6-36) 

The transmissivity of this aper ture  drops (in any direction f rom 

the center) to 1 / e  of its maximum value at the center of the aperture.  

The normalized quality and spatial-frequency functions drop to 1 /e  at a 

distance A f i a n d  1 / A n f i f r o m  the center, respectively. 

t e r m s  of a square aperture with s ides  equal to A ,  the first 

I f  one thinks in  
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null of the spatial-frequency (response) function occurs at  l / A  in either the 

x o r  y-direction. 

gaussian aperture defined by 

This function i s  closely approximated by the circular 

e (142%)" , (6 -37)  

which has an "effective" diameter equal to the cut-off wavelength of the 

square aperture.  

aper ture  is equal to the reciprocal of the cut-off frequency. 

That is, loosely speaking, the diameter of the gaussian 

We note that 

the quality and 

a r e  uniform in 

a r e  not. 

spatial-frequency functions of the circular  gaussian aperture  

all directions whereas those of the square gaussian aperture  

We conclude this discussion on resolution by observing that, in the 

absence of confusion noise, the quality function depends only on the coordinate 

differences (x-x!) and(y-y') and not on the coordinates x and y themselves 

( see  6-17). Hence the resolution of the replica is spatially uniform. 

6.4 Contra st 

We define the contrast c2 of the replica by 

( 6  -38) 

where the bar  indicates a space average. 

desired by subtracting an appropriate 

screen. 

This quantity can be adjusted a s  

amount of "light" at the integrating 

6 .  5 Relative Total Intensitv Ranee 

We define the relative total intensity range iR of the replica by 

R .  - R .  max min 
k z  - 

R 
(6 -39)  
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This quantity can also be adjusted as  desired by subtracting an appropriate 

amount of light at the integrating screen. 

6. 6 Linearity with Respect to Intensity and Spatial Distortion 

The operations performed by the proposed instrumentation - 
whether they be used for a spot-scan or  area-scan system - a r e  l inear 

and should introduce even in actual practice no significant non-linearity o r  

spatial distortion. 
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7. RELATIVE SYSTEM PERFORMANCE O F  AREA-SCAN AND 
SPOT -SCAN TELEVISION 

7.1 Spot -Scan System 

1 Let 

(7-la),  (7. lb )  1 - 
- a i  AX' Ymax 

f '  - -  and f 1 - 
X max 

be the highest significant space frequencies in  the original image corresponding 

to the X! and the y'-directios, respectively. 

pendent samples N1 in an original image with dimensions 2a' by 2b' is 

Then the total number of inde- 

1 1 1 1  
b & Ay' * 

N = 2(2a')- 2 ( 2 l ~ ) ~  = 16aW- - 
1 

( 7 - 2 )  

The corresponding highest time-frequency f and t ime -bandwidth B a r e  

(7-3) 

where v i s  the speed of the transmissivity patterns. 

independent of the form of the transmissivity patterns in the absence of both 

types of confusion noise and of effective photosensor and receiver  noise. It 

provides in this ideal case an expression for the minimum bandwidth re-  

quired to obtain a perfect replica. 

This relation i s  

In practice the value of the bandwidth B ,  given by expression (7-3), 

must be increased - even in the case of a spot-scan system - i f  a high- 

fidelity replica is to be obtained. 

have a value l a rge r  than the one given by (7-3) i f  confusion is to be avoided 

with a spot-scan system when - as  is usually the case - the space-filter 

function of the scanning aperture  (transmissivity-pattern element) has  a wider 

bandwidth than f. 

aperture  used has  maximum significant frequencies 

In particular,  the time-bandwidth B must 

In fact, i f  the space-frequency response of the scanning 

1 - --E f 
X max 

and 

Here AX! and ~ y '  a r e  the "widths" of the quality function in the 2-direction 
and y'-direction, at points beyond which the amplitude of this function is  
negligible. 
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we must,  in the case of a spot-scan system, take - to eliminate confusion of 

the first kind - a number of independent samples N1 given by 

1 1  N = 16a'tJ- - 
1 A x  Ay ' (7-4) 

so that the required time-bandwidth B is now given by 

(7-5) 

The total number of independent samples contained in a waveform 

of bandwidth B and duration T is  

Nl = 2BT. (7 -6 )  

It follows, by comparing ( 7  -4) and (7-6) , that 

1 1  2BT = 16a'b'-- 
A Y  

or, using (7-5), 

2-T V = 1 6 a W A e ,  1 
A X  (7-8) 

and therefore the length of the transmissivity-pattern displacements 'vT 

during one integration interval must at least  be equal to 

1 
AY 

VT = 8a'b' - . ( 7 -9) 

I f  the frequency-response of the transmissivity patterns has a 

maximum significant space -f r e quenc y 

(7-10) 

the corresponding length of the transmissivity pat ternmust  at leas t  be equal to 

1 VT = 8a'b' - 
A Y  

(7-1 1) 

in order  to avoid confusion of the first kind. The corresponding number of 

l ines  scanned i s  
c 

(7-1 2 )  
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This value of J provides perfect replication in a spot-scan system in the 

absence of ''effective t ransmit ter  noise" or "effective receiver noise"'. 

t e r m  effective t ransmit ter  noise i s  used to denote the noise originating in 

the low-level circuits of the transmitter which will probably consist of a 

photosensor and a p re  -amplifier following this photosensor. The t e r m  

"effective receiver noise" is used to denote the noise originating in the 

communications link and in the low-level circuits of the receiver.  

The 

Let  now J be the number of scanning-lines chosen to get, with a spot- f 
scan system, a replica of a given quality in the absence of effective photo- 

sensor  and effective receiver noise. This number J will be smaller than that f 
give by (7-12) i f  some confusion noise i s  acceptable. 

transmissivity-pattern length vT is given by 

The corresponding 

vT = vT = 2a1Jf . f '  7- 13 

We shall refer  to the integration interval Tf ,which corresponds to Jf,as the 

"frame time". 

We shall assume in the discussion given inthis section that Jf has been 

chosen so a s  to give, together with a given transmissivity-pattern element 

(which we do not specify),a replica of a specified quality in the y-direction. 

The number of scanning lines J chosennot only determines the f 
amount of confusion noise generated but also places an upper limit on the 

achievable resolution in the y-direction when all the points of the original 

image a r e  scanned at  least  once b y  the aperture  (that is, when no gaps exist 

between the image s t r ips  scanned by this  aperture).  

achieved in this direction depends on the size, shape, and shading, of the 

aperture  ( t ransmis  sivity-pattern element) chosen; let  the maximum space - 
frequency corresponding to this resolution be 

The actual resolution 

I This i s  the case in practice i f  the original image intensity is high and i f  the 
level of the received signal is high. 
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(7-14) 

On the other hand, the resolution in the x-direction depends solely on the size,  

shape, and shading of the aperture  chosen; let the maximum space-frequency 

corresponding to 

W e  

W e  

then have for 

Bf = (1) . 
AXf 

this resolution be 

the co r re  sponding 

(7-15) 

time -bandwidth Bf, the relation 

(7-16) 

now chose values for  AX)^ and (AY) These choices, together with our f '  
previous choice for J 
spot-scan system when the dimensions 2a' and 2b' of this replica a r e  given. 

(We have assumed, see Assumption B , that the dimensions of the replica 

are the same as those of the original image. ) F r o m  (7-13) and (7-1 5), we 

have 

determine uniquely the quality of the replica of a f '  

Jf BfTf (7-1 7 )  

and hence the quality of the replica is also determined uniquely by the product 

BfTf and for given values of 2a' and 2b'. 

We now seek to discover, i n  the case of a spot-scan system, the 

effect on the replica signal-to-noise ratio of the system parameters  l isted in 

Subsection 4.3. To simplify the discussion, we shall group together param-  

e t e r s  that affect the replica signal-to-noise ratio in the same way, and shall 

use  new quantities to describe the effect of each of these groups on this ratio. 

We shall use the total average power P. intercepted by the receiver  instead 

of parameters  (5) and (6)  in Subsection 4.3; we shall use  N to denote the r 
effective receiver noise per  unit bandwidth, that is, the noise 

ar is ing f r o m  i tems (4) and (5); and we shall use (S/N)t to denote the effective 

signal-to-noise ratio of the transmitted signal corresponding to i tem ( 3 ) .  

The remaining two parameters  listed in  Subsection 4. 3 a r e  the video band- 

width B and the integrating time T. 

in  our present discussion. 

1 

These two parameters  a r e  used explicitly 
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The total power radiated by the original image through an aperture  

of the transmissivity pattern is a t  any given instant 

A i s  the effective area of this aperture and (2,y') i t s  position at that instant. 

That is, the factor A is not necessarily equal to the geometric a r e a  of the 

aperture:  this factor is adjusted to allow for a transmissivity not equal to 

unity and for a variation in the intensity I(2,y') over the aperture.  

equal to AI(x',y'), where 

Let De be the "effective detectivity" of the photosensor on which the 

radiation f rom the original image i s  focused, (after it goes through the 

aper ture) .  (The t e r m  "effective" is used to indicate that the quantity D e 
includes the effect of noise originating in the preamplifier following the 

photosensor. ) Then the instantaneous signal -to -noise power ratio of the 

transmitted signal is  

- 

B (7-18) 

If we t ransmit  only the ac component of this signal, we have for the average 

t ransmit ted signal-to-noise power ratio (S/N)t over the f r a m e  time Tf the 

expression 

(7-1 9) 

where 
- 

(7  -20) 2 o1 3 I 4 2 , y ' )  - f 4 w  
is the space-variance of I(x',y') over the "frame'lof the original image. 

When the apertures  are rectangular, this result  is completely inde- 

pendent of the ratio of the y-dimension 

between the center-lines of two adjacent image s t r ips  scanned by the aper -  
1 

ture .  In effect, i f  this ratio is  n ,  the number of t imes  the same point (x',y') 

is scanned is also n; we therefore have 

of the aperture  over the distance 

Except for a change in  the "effective area"  A, which is  insignificant for 
the usual range of the values of A which one might consider using for  a 
given value of Jf and 2M. 
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(7-21) 

This result  is  not precisely correct  if the aper ture  is not rectangular o r  

if adjacent strips a r e  not contiguous; but it still holds,to a high degree of 

approximation, for the usual aperture shapes and centerline distances used. 

The total average input signal power S to the receiver ,  which a r i s e s  

f rom the power radiated by the original image, i s  given by 
1 

(7 -22) 

and the total input noise power Ni to the receiver ,  which a r i s e s  f rom the 

effective t ransmit ter  noise, is given by 

( 7 - 2 3 )  

If a point of the replica is  scanned n t imes by the scanning aperture  

in the receiver  (because the ratio of the y-dimension of the aperture  over the 

distance between adjacent scanning lines i s  greater  than unity), the space- -. 
L variance u 

is 

of the replica ar is ing from the radiation f rom the original image R 

( 7  -24) 2 2  o R = n 5  

because of the integrating property of the screen on which the replica is  

displayed and because the intensity of the original image is time-invariant 

during the integration interval. On the other hand, the space-variance 

o2 ar is ing f rom both the input noise N. and the receiver noise N B i s  N 1 r 

U k = n N . t n N B  1 r (7-25) 

again because of the integrating property of the screen and because the noise 

fluctuates during the integration interval. Similarly, i f  the total integration 

interval T is  la rger  than T s o  that 
f '  

T = mT (7-26)  f '  

where m is usually a (positive) integer, we have 
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c , i = m n ?  2 2  

and 
2 oN = mnN. t mnNrB. 

1 

Consequently the replica signal-to-noise ratio ( S / N k  i s  

mn? 2 2  m n  5 2 
S - ..-= OR - (RL - 2 

uN 
m n y +  ~ N , B  - N ~ + N ~ B  

(7-27) 

(7  -28) 

(7-29) 

Replacing 9 and Ni by the expressiomgiven in (7-22) and (7-23), we obtain 

Now 

pi 

(n) 
NrB = -  S '  

r 

where (S/N), is the effective receiver signal-to-noise corresponding to noise 

originating in the communications link and the receiver.  

value of NrB into (7-  30) ,  we obtain 

Substituting this 

We now define Cf by 

Cf 5 BfTf , 

or, using (7-26) 

C f = B - .  I 

m 

7 -  30 

(7-31) 

( 7  -32) 

(7-33) 

( 7  -34) 
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F r o m  equations (7-19), (7-31), and (7-34), we obtain 

S mn 
N B  r (-) = B N B  B NR 

2 2d Pi 
- r +- 

A OI e A ' ~  e 
+ 2 2 3  Pi 

o r  

S 
N mC r f - -  1 

(- ) = N 
93 1 r 

T +-t 
~ ~ o t <  pi A'U~DZ, pi 

(7-35) 

(7-36) 

Clearly the best replica signal-to -noise ratio occurs  for 

m = 1. (7-37) ~ 

I 

That i s ,  i f  we are given an integration interval T and desire  a given replica 

quality in  the absence of effective transmitter and receiver noise, we should - 
in o rde r  to get the best replica signal-to-noise ratio - chose to send a 

single frame during T. 

we always chose I 
Consequently, in the case of a spot-scan system, 

T f = T .  

Because, as mentioned earlier, the product 

( 7 -38) 

Cf = B T  (7-33) f f  
r 

is a constant for  a given replica quality in the absence of effective t ransmit ter  

and receiver noise, it follows that - under the stipulated conditions-we 

should use  a bandwidth B given by 

so that 

B = B  f '  

(7-39) 

( 7 -40) 

With this choice of m, we have 

7-8  
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(7  -41) 

We note, as expected, that the replica signal-to-noise ratio in both (7-36) 

and (7-41) increases  with the integration interval T ,  and increases  with 

decrease in c f '  
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7.2  Area-Scan System 

We consider here  only an area-scan system using quasi-random 

transmissivity patterns with internal periodicity because such patterns pro - 
vide,in general ,  a superior performance to that provided by purely random 

patterns.  

The former  patterns have opaque regions of length 2a' between 

successive segments of length 2a1J5 Therefore,  we now have 

Jf t 1  T = m -  Jf Tf 

and 

C f = B T  f f  

( 7  -42) 

( 7  -43) 

instead of (7-33) and (7-34), respectively. 

Jfare constants of the system and when T is given, we shall write 

When, as before, Cf and 

T 

T J r  I C f = B A  - m Jfll ( 7  -44) 

and consider the replica signal-to-noise ratio obtained for different values 

of B and m. 

The analysis proceeds as before, except for the following differences. 

First, the transmitted signal-to-noise power ratio (S/N); i s  now 

( 7 -45) 

instead of as given in (7-1 9); the constant K is  the number of aper tures  

(transmissivity-pattern elements) illuminated at the same time. 

have 

We now 

S '  

t 
(R)  

1 + ($ 
( 7 -46) S '  

t 

s; = P. 
1 

and 
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(7-47) 

Second, the K apertures  at the t ransmit ter  and the K apertures  a t  

the receiver  give a total number K2 of paths for the radiation arising f rom 

the original image. The desired r e d i c a  is produced by radiation using K 
of these paths; the remaining ( d K  ) paths produce confusion noise of the 

second kind. We get  

(a)  f o r  the spatial variance aF of the desired replica R 

(b) for  the space-variance a? of the confusion noise R2 

2 2 
Pc : oRz = (K-l)mn 5 

( 7  -48) 

(7  -49) 

(c)  and for the space-variance of the replica noise, ar is ing f rom 

both effective transmitter and receiver  noises 
-. 

a; = KnmNi + KnmNrB. ( 7 -50) 

Consequently, the replica signal-to-noise ratio (S/N)IR i s  

2 2 2  K m  nS i  
- - 

Kmn(WitNrB) +pc  - (7-51) 

Replacing S i ,  Ni , and P. 

(7-49), we obtain 

by the expressions given by ( 7  -46), (7-47) and 
1' 

2 2  S '  K m  n P(-) i N ,  

o r ,  remembering (7-31) and using (7-45), 

7-11 
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E 
Substituting the expressions given by (7-45), (7-31) (with appropriate pr imes) ,  

and (7-39), in (7-53), we obtain 

nB-- T Jf 
S I  Cf Jftl 

(R)  = 
1 
K 

N B  . r  

u 2 u I y  pi KA~@ pi 
+n (1--) - N B  B + r t -  R B 

o r  

S '  (N) = 
R 

T Jf n- - 
C, J++1 

hence, for large values of J f 
T 

n 7  
L f 

nT N r t- 1 
2 2& Pi 

K A u ~  e 

W e  can, in principle, maximize (S/N)k by choosing m so that 

npF-u~ 2* e 
m2 = ( ~ - 1 )  

N ("f,"( 1 + Lf 
rT Jf 

o r ,  for large values o f  Jf , so that 

Fo r  

rn2 M (K-1 

this value 

nPiA2 of.", 
1 

T 

of  m 

( 7  -54) 

(7  -55) 

( 7  -56) 

( 7  -57) 

( 7  - 5 8 )  
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S '  (w) = 
R 

T 3  n- - 
c* Jft' 

112 N 1 

Hence, for  la rge  values of K and J ,  we have 

n- 
Cf - nTPi S S '  w - - - = n $ $  'mk N r 'fNr r 

( 7 -  59) 

( 7 - 6 0 )  

By comparing (7-59)  with ( 7 - 3 6 ) ,  we note that an area-scan system 

can, in principle, eliminate the effects of the effective t ransmit ter  noise com- 

pletely. 

additional bandwitth. This bandwidth B i s  approximately m t imes greater than 

that required to produce a replica of a given quality in the absence of effective 

t r an smit t er 

replica is  the same. 

spot-scan system and that of the area-scan system discussed in this section 

is 

This i s  achieved with the same t ransmit ter  power but at the cost of 

noise when the t ime T taken to produce a single 

The exact relation between the video-bandwidth of the 

J r +  1 
B - m -  - 

Jf spot-scan e 

B 
area-scan  (7-61) 

This relation is obtained by comparing equation ( 7 - 3 9 )  with equation (7-44). 
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8. MERITS OF MECHANICALLY SCANNING APERTURES FOR SPOT-SCAN 
TELEVISION 

Area- scan television uses  simultaneously-illuminated multiple - scanning 

These cannot readily be instrumented with conventional pick-up apertures .  

tubes and cathode-ray tubes. W e  have, therefore, considered a variety of 

mechanically scanning apertures and, in particular,  film strips,  steel  s t r ips ,  

and rigid discs.  Systems using such scanning apertures  a r e  light and rel ia-  

ble and, more  specifically, they need no high-voltage supplies and no sweep 

ci r cuit s . 
We therefore believe that spot-  scan television, using mechanically 

scanning apertures,  should be considered fo r  applications in which these 

features a r e  valuable. 

desired.  Such replicas can, in effect, be obtained quite simply by using 

This is particularly t rue when colored replicas a r e  

(a) three scanning apertures that a r e  trans- 

parent to  three different wavelengths, 

three photosensitors to convert the radi- 

ant image into electrical  signals, 

three separate channels in the communi- 

cation link, 

three "driving" lamps at  the receiver to 

provide the uniform illumination %, and 

(b) 

(c) 

(d) 

(e) a three-color integrating screen. 

Note: 
t ical  analysis of multi-colored images, i t  can be shown that 
replicas of such images can a l s o  be obtained to  any desired 
degree of perfection. 

Although we have not given in this report  the mathema- 

With film and steel  s t r ips ,  speeds in excess of 100 inches/sec a r e  

readily achievable, and with discs  

inches/sec a r e  readily achievable. 

peripheral  speeds in excess of 3000 



I * -  

The application of interest  t o  JPL - according to post-contractual 
* 

discussions -is the transmission of an image 11 mill imeters square. 

des i red  resolution is equivalent to  that of a 200-line (television) scan with the 

same resolution in a direction parallel to the scanning motion. 

integration t ime T is 800 secs.  

t ime available for scanning a single line is 4 secs ,  and the corresponding 

scanning-aperture speed is l e s s  than 3 m m / s e c  ( ~ 0 .  12 inch/sec).  

accuracy with which this aperture must be placed is approximately 0.01 mm 

The 
I 
I 
1 

The desired 

For  these parameters ,  it follows that the 

The I 
(m0. 004 inch). 

1 
Under these conditions, we believe that a film str ip  - i f  the envi- 

ronmental conditions a r e  not too severe - or  a s teel  s t r ip  offers a suitable 

mechanization of the transmissivity patterns used for  scanning. The length 

of the s t r i p  is 2. 2 meters ,  which is quite acceptable. 

I 
1 

We conclude by noting that a mechanically scanning aperture  can be 

used at the transmitter together with a cathode-ray tube display at the receiver.  

This may provide the optimum instrumentation when high frame speeds and 

la rge  replicas a r e  required. I 
1 
i 
I 
1 
I 
R 
1 
I 8 -  2 
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9.  RELATIVE MERITS O F  AREA-SCAN AND SPOT-SCAN TELEVISION 

Area-scan television provides secure transmission: a replica of the 

original image cannot be reconstructed by intercepting the video signal t rans-  

mitted i f  the exact form of the weighting functions used is not known. 

In addition, for a given transmission t ime T per  picture,an a rea-  

scan system can, in principle, produce - at the expense of bandwidth - a 

repl ica  of a higher quality than that provided by a spot-scan system when 

the intensity of the original image i s  low. 

making the noise generated in the low-level circuits of the t ransmit ter  

ne gli gible . 

This higher quality is achieved by 

Whether this improvement in quality can actually be realized in 

practice, depends on the system parameters .  

that 
me te r s ,  as can be seen from (7-56). 

(integration t ime) T permissible,  which in turn depends on the speed at which 

the images of the moving objects to  be televised a r e  moving. 

practical considerations limit the speed v of the transmissivity patterns, and 

hence also the maximum displacement of these patterns during T. Further-  

more,  since - as  we have seen in Section 5 - these transmissivity patterns 

must,  in order  to reduce "confusion noise" be much longer than 

those required to  achieve a replica of a given quality in the case of a spot-scan 

system. Consequently, an area-scan system cannot televise moving objects 

at speeds a s  high as those which can be televised with a spot-scan system. 

(The value of m in Subsection 6 . 2  

gives the maximum replica signal-to-noise ra t io  depends on these para- 

It also depends on the transmission time 

In effect, 

In deciding whether to use an area-scan system of the type we have 

discussed in this report ,  we must  f i rs t  determine whether the required t rans-  

missivity-pattern speed i s  achievable. 

system parameters  to determine whether we a r e  able to  choose a near-optimum 

value for the parameter m .  

If it is, one must then examine the 

Mechanically scanning apertures offer, also in the case of an a rea-  

scan system, a relatively light and reliable technique for providing colored 

replicas - especially insofar as  the transmitter is concerned. In this case, 
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we must  add -in addition to the i tems listed on page 8. 1 - three "quenching" 

lamps of different color at the receiver to  subtract an appropriate amount of 

the dc component of the replica intensity distribution; we must also use an 

integrating screen which can be quenched with these lamps. 

I 
I 
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